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Abstract

Real life structural systems are characterized by their inherent or externally induced uncertainties in the design
parameters. This study proposes a stochastic finite element tool efficient to take account of these uncertainties. Here
uncertain structural parameter is modeled as homogeneous Gaussian stochastic field and commonly used two-
dimensional (2D) local averaging technique is extended and generalized for 3D random field. This is followed by
Cholesky decomposition of respective covariance matrix for digital simulation. By expanding uncertain stiffness matrix
about its reference value, the Neumann expansion method is introduced blended with direct Monte Carlo simulation.
This approach involves decomposition of stiffness matrix only once for the entire simulated structure. Thus substantial
saving of CPU time and also the scope of tackling several stochastic fields simultaneously are the basic advantages of
the proposed algorithm. Accuracy and efficiency of this method with reference to example problem is also studied here
and numerical results validate its superiority over direct simulation method or first-order perturbation approach. © 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Modern numerical techniques like the finite element, finite difference, boundary element methods etc.
have become quite elaborate and include sophisticated mathematical modeling for analysis. Conventional
analysis procedure utilizes selectively representative (minimum or maximum) values of the structural para-
meters involved. But real life structural systems employed in civil, mechanical, aerospace and offshore fields
are characterized by inherent randomness in the definition of their parameters described temporally and
spatially. The major sources of such randomness encountered in physical environment can be identified in
uncertainty of material properties, loading conditions, geometric profiles etc. Scatters in characteristics of
these system parameters have been noticed even with the best quality control and those can precisely be
described only probabilistically. In this context, it is important to emphasize the fact that increased so-
phistication in the stress analysis must not be trade of by simplifying in modeling the structural system
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parameters. The analysis should be consistent in the sense that mechanical modeling, stress analysis and
safety evaluations are carried out at least at the same degree of sophistication. This can not be achieved
properly through deterministic analysis.

The numerical tool required for stochastic structural analysis should primarily be concerned with
quantifying uncertainties in structural response i.e. displacements, stresses etc. The most developed one i.e.
the finite element method provides the necessary modeling flexibility. Standard deterministic form of the
finite element tool modified to the stochastic finite element method (SFEM) has been developed to analyze
system stochasticity problems. Extensive reviews regarding this are found in Vanmarcke et al. (1986),
Benaroya and Rehak (1988), and Schuéller (1997). In stochastic finite element method three basic tech-
niques are generally practiced. The most widely used one is the perturbation technique (Hart and Collins,
1970; Handa and Karrholm, 1975; Hisada and Nakagiri, 1980; Nakagiri and Hisada, 1980, 1983; Liu et al.,
1986). It is quite a simple method utilizing first-order Taylor series expansion to formulate linear rela-
tionship between statistical characteristics of the response and input random structural parameters. But
involvement in the computation time for terms higher than first-order is prohibitively high and not prac-
tical. This restricts the applicability of the method to the problems associated with small variability. The
Monte Carlo simulation (Shinozuka and Astill, 1972; Shinozuka, 1987; Yamazaki and Shinozuka, 1989) is
another method, which is frequently used in system stochasticity analysis. The major advantage of simu-
lation method is that an accurate solution can be obtained and higher order statistical moments and
probability distribution of the response quantities can be computed. But it involves abnormally high
amount of CPU time. The third approach is known as the Neumann Expansion method, which has been
rarely used in the field of structural mechanics (Shinozuka and Deodatis, 1988). But the method is found to
be effective when coupled with the Monte Carlo simulation technique (Yamazaki et al., 1988; Chakraborty,
1997).

The present study primarily focus on the SFEM in determining response variability for three-dimen-
sional (3D) static problems subjected to spatial uncertainties of the material properties. To accomplish this,
the random fields are discretised by local averaging technique and then simulated by Cholesky decom-
position of the respective covariance matrix. Stochastic modeling employing local averaging for 2D case is
readily available in the literature (Vanmarcke, 1977; Vanmarcke et al., 1986; Vanmarcke and Grigoriu,
1983). But it appears that no work is reported as yet for 3D case. Following the basic principle (Vanmarcke,
1977; Vanmarcke, 1983; Vanmarcke et al., 1986; Zhu et al., 1992) local averaging model is extended
for three dimension. The finite element solution has been obtained for response variability utilizing the
Neumann expansion technique within the framework of Monte Carlo simulation and analysis is also
carried out for comparison in terms of accuracy and efficiency.

2. Stochastic modeling by local averaging method

Several methods of discretization using continuous and discontinuous representation of stochastic field
are reported in literature (Vanmarcke, 1977; Yamazaki et al., 1988; Ghanem and Spanos, 1991). Contin-
uous representation involves solution of the integral eigenvalue problem, which may not have a closed form
solution for realistic covariance function. But in discontinuous representation, the stochastic finite element
models based on local averaging technique found to yield more rapid convergence than the mid point
method (Zhu et al., 1992). Moreover, detailed knowledge about the correlation function of the random field
is not essential. If it is available, the use of direct variance reduction function can be obtained. In the present
section, 2-D local averaging technique is extended for 3-D averaging.

In local averaging technique the field variable over an element is approximated by spatial average. A
homogeneous Gaussian random scalar field «(x, y,z) defined over the domain Q is assumed, characterized
by its mean a(x,y,z), variance ¢® and variance function p(r,r,,r.) where r, =x—X, r,=y—y and
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r. = z — z. The local averdges of the field over a volume ¥; centered at (x;,;,z;) having sides L, L, and L
parallel to ‘x’, °y’ and ‘z’ axis respectively, is defined as:

1 (L) prit(Ly,/2) Li/2
( io71) = / / / #(x,7,2) dxdydz (1)
LXiL,ViLZ: xi—(Ly; /2) yi—(Ly;/2) zi—(Li/2)

If the correlation of the field is assumed to be quadrant symmetric, the mean vector, variance and the
covariance of the spatial averages between any two volume elements V; and V; can be obtained as:

E(a) =@ (2)
Var(a) = O-V(anLJ)aLZ) (3)
COV(O{,‘ OC) 1 i (71)k+l+m(kaLv/Lzm)2V(er L,/ Lzm)a (4)
Y 8VV J kel m=0 ’ N
where ¢ = diag[oy,02,...... , 0; 1s the standard deviation of the ith random parameter and

_ _ _ _
V(LxlmLylyLzm — kav/Lzm/ / / (1 )( Lyl><1 Lzm)P(VmVyﬂ”z)dxdde (5)

Here Ly, L, and L., (k,I,m=0,1,2,3) are the distances characterizing relative positions of any two
discretised volumes ¥; and V; as shown in Fig. 1 And y(Ly, Ly, L.,,) is normalized variance function of the
local averages w(x, y,z) over the volume with sides Ly, L,; and L.,,. This function depicts the dependence of
the variance of spatial averages on the size of averaging element. The 1D variance function corresponding

o p(r) = exp |~ (r/b)’

0= (2) [rvas(2) +e® 1] ©

where @(-) is the error function. Its value increases from zero to one as the argument increases from zero to
infinity and ‘b’ is the correlation parameter. If a(x,y,z) is separable, i.e., p(r, 7y, 1) = p(r)p(ry) p(r2), 1D
expression for variance reduction function can well be modified for 3D purpose and becomes simply the
product of three 1D factors, y(Lu, Ly, L) = Y(Lw)y(Ly1)y(Lw). This 1D result for computing the variance
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Fig. 1. Definition of distances characterizing relative positions of any two cubic volumes ¥; and V;.
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reduction function can be easily used for the exponential covariance function of the following form, which
has been taken for present numerical study.

orn=or [ {(2) +(2) - ()

For a particular analytic expressions corresponding normalized variance function can be computed. Var-
ious form of analytic expressions i.e. triangular, exponential etc. characterized by a parameter (correlation
parameter) have been reported (Vanmarcke, 1977). However suitability of any model can be justified by
fitting actual experimental data. As no experimental data is available to ascertain the relative merits of
alternative models, exponential models have been selected with the purpose of illustrating the analytical
procedure. Note that if the field is not homogeneous and or quadrant symmetric or the local averaging
domain is non rectangular, then the Gaussian quadrature can be used (Zhu et al., 1992) to compute the
covariance matrix of the random vector field.

3. Simulation of stochastic field

If there are N finite elements in the structure, correlated zero mean random vector {a} =

{og, 00, ... .. ay}" of the random field «(x, y,z) can be obtained as:
{o} = [L{Z} (8)
in which {Z} = {Z,,2,,...... Zy}" is a vector comprising N independent Gaussian random variates with

zero mean and unit standard deviation and [L] is the lower triangular matrix derived through Cholesky
decomposition of cov(a;, o). Once the Cholesky decomposition is over, the sample vector of any random
design variable can easily be obtained for any number of simulations desired (Yamazaki et al., 1988). In
general, the sample size is guided by the desired degree of accuracy of the mean and standard deviation.
However a fairly large size of the ensemble is required for the simulated covariance matrix approach the
target covariance matrix, satisfying the original covariance property (Vanmarcke et al., 1986).

4. General FEM formulation

The standard displacement based finite element discretised version (Cook et al., 1988) of the equilibrium
equation for linear static problem can be written as:

[K(){u(h)} = {F(h)} ©)

In which the load vector {F(h)} and the overall structural stiffness matrix [K(%)], both are function of
design parameter /, defined as:

! (10)
N
{F(h)} =Y _{f()}.
e=1
where summation symbols indicate that contributions from all the elements of the structure need to be

included. The element stiffness matrix [k(%)], and the element load vector {f (%)}, in above equations are
defined as:



S. Chakraborty, B. Bhattacharyya | International Journal of Solids and Structures 39 (2002) 2465-2475 2469

(11)

(o) = [T {g}as
After applying proper boundary conditions, the unknown displacements {u(%)} are obtained by solving the
equilibrium equation.

5. Stochastic finite element formulation

In Eq. (11), the elasticity matrix [D], is random in nature due to the uncertainty in the parameter / and
can be written in the following form:

[D], = hi[C], (12)

where A, is a random field representing the modulus of elasticity over the domain ., [C], is a deterministic
matrix and 2, € . As [D], is random, the stiffness matrix [K], in equilibrium equation (9) is also random in
nature. Here the design variable is decomposed into its mean and fluctuating component as, 2 = hy + Ah,
where Ah is obtained at elemental through digital simulation of the stochastic field. The random stiffness
matrix can be spilt up into mean and deviatoric parts as:

(k(h)], = [k(ho)], + [k(AR)],

(K (h)] = [K(ho)] + [K(Ah)] (13)
where
[k(n)], = C. /Q [B"[C),[B]dQ and [k(Ah)], = a[k(ho)], (14)

Here [B] is the standard strain displacement matrix. Though [B] has been taken in present analysis de-
terministic, it is more elegant to introduce the concept of stochastic shape function (Dasgupta, 1995) in the
derivation of strain displacement, particularly for larger stochastic variation. Once the mean and deviatoric
part of element stiffness matrices is generated, these can be assembled in usual procedure as done in de-
terministic finite element method to obtain the global stiffness matrices.

6. Direct Monte Carlo solution

Implementation of the Monte Carlo simulation method consists of numerically simulating a population
corresponding to the random quantities in the physical system, solving the deterministic problem associated
with each sample of that population and obtaining a population corresponding to the random response
quantities. The random vector {o} = (o, 00,03, . . ., oc,,)T, which represents the variation of material prop-
erty or load etc. as may be the case, can be generated using Eq. (8) Subsequently, the structural stiffness
matrix or load vector is generated. Thus a sample global stiffness matrix and load vector are formed on the
basis of the sample stochastic fields. The response of the structure is then determined by relying on the
standard finite element algorithm. This procedure is repeated several times to produce an ensemble of
structural response. The statistical algorithms are utilized to compute various useful statistical moments of
the response quantities from the ensemble responses.



2470 S. Chakraborty, B. Bhattacharyya | International Journal of Solids and Structures 39 (2002) 2465-2475

7. Neumann expansion solution

In direct Monte Carlo simulation method, the random stiffness matrix needs to be inverted for each
simulated structure leading to an enormous amount of CPU time. The Neumann expansion technique has
been adopted to avoid the repeated inversion of the random stiffness matrix. Here the inversion of random
stiffness matrix [K(%)] takes the following form:

KW ™" = ([K(ho)] + [K(AR)]) ™ = (1] + [P]) "' [K ()]
= (=[P + [P =[P+ )K(h)] ' = (fj[ - P]") [K (ho)]™" (15)

n=0

where [P] = [K(ho)]”'[K(Ah)]. Substitution of Eq. (11) into Eq. (9) yields the response vector as,

{u(h)} = (i[ - P}") K (o) {F ()} = (1] = [P+ PP = [P+ -+ ) {uo}

={uo} —{w} + {wa} —{us} +--- (16)

where {uy} = [K(ho)]'{F(h)}. The above series solution is equivalent to the solution to following recursive
equation:

[K(ho){u;} = [K(AR){u_, } (17)

Once the inversion of deterministic part of the stiffness matrix is computed, {u(4)} can be computed for
each simulated load vector. Then Eq. (17) can be used iteratively to obtain the random displacement for
each simulated sample structure without further decomposition of the stiffness matrix. The expansion series
in Eq. (16) may be terminated after few terms depending upon the convergence and accuracy requirement
of the solution. The most outstanding feature of the method is that single matrix (deterministic part only)
factorisation is required for all the sample structures. Therefore, the computational time can be reduced
considerably.

The Neumann expansion used in Eq. (15) will converge if the absolute values of all the eigenvalues of [P]
matrix are less than 1.0. For the present study Gaussian model has been selected for stochastic represen-
tation of modulus of elasticity, though non-Gaussian field models are also existent (Sobczyk et al., 1996).
The Gaussian models have limitations where design parameters experience large variations. Again as-
sumption of Gaussian distribution implies the possibility of generating negative values of elastic properties.
As truncated Gaussian distribution has been used for generation of random sample functions of the un-
certain parameter, these difficulties can be circumvented and the convergence criterion is automatically
satisfied. However this convergence criterion can easily be met irrespective of largeness of each component
of the deviatoric part of matrix [K(h)] (Yamazaki et al., 1988).

8. Perturbation method

In perturbation method, all the vectors and matrices in the system equation (9) are expanded employing
Taylor’s series as:

([K(hoﬂ + Z 66}1[ K;(ho) ]Ah> ({u ho)} + Z 6h u;(ho }Ah> <{F ho)} + Z Fi(ho }Ah>
(18)
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Neglecting higher order terms and equating terms of same order, following set of recursive equations are
obtained

[K(ho)[{u(ho)} = {F (ko) }

, d (19)
[K (ho)]{ul(ho)} = — A [Ki(h){u(ho) }

where {u!(ho)} = 0/0h{u;(hy)} for ith element. The expected values and covariance of {u(h)} are estimated
as

E{u(h)} = {u(ho)} (20)
Covl{u(h)}, {u(m)}] = E[({u(h)} — {u(ho))({u(h)} — {u(ho)}") :Z 4 {uf (ho) Hu (o)} Elhi, b))
(21)

The variance vector is the diagonal component of Cov[{u(h)}, {u(h)}] and E[h;, h;] is determined from the
auto-correlation function of the underlying stochastic field of 4.

9. Numerical example

To elucidate the stochastic finite element formulation with respect to the accuracy and efficiency, an L-
shaped beam problem subjected to concentrated tip loading of 80 kN is taken. The 3D finite element model
is shown in Fig. 2. Spatially varying modulus of elasticity is considered. Mean value of Young’s modulus
(E) is taken as 200 GPa and deterministic Poisson’s ratio 0.30. Here the Young’s modulus is modeled as 3D,
stationary, zero-mean Gaussian process:

E =Ey(1 +AE), where AE =E,-dof (22)

which is sufficiently characterized by its mean Ey, and the random deviatoric part o is obtained through
digital simulation as described in Eq. (8). The correlation parameter in all the three directions is taken as
half (1/2) the element length. The results of the numerical examples are provided at the locations where
large outputs (tip deflections) are expected. The results of the direct Monte Carlo simulation and first-order
perturbation have been shown in the same figure and table for the ease of comparison.

| 300 mm |
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Ve v
S S \ 100 mm
) 4
§ 2 @ 2
I,,l/ //// I”/’ 6
/’/ I// l”
/ / /s
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Fig. 2. Finite element discretization of the beam.
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10. Results and conclusions

The size of the ensemble should be large enough to obtain statistically stable result. As it is observed
from Fig. 3 that fluctuation of standard deviation of deflection is negligibly small after 200-simulation,
number of simulation is fixed at 200. The comparison of convergence of expectation as well as standard
deviation of displacement with increasing orders in Neumann expansion is shown in Figs. 4 and 5. It reveals
that rate of convergence is substantially improved when the order of expansion is increased from one to
two. Beyond third order expansion, results approach close to those obtained from direct simulation but

1.0E-2

c.o.v. of 'E'=0.20
8.0E-3 —

6.0E-3 —

4.0E-3 —

2.0E-3 —

Standard deviation of displacement (mm)

0. 0E+0 T I T I T I T I T
0 400 800 1200 1600 2000

Number of Simulation

Fig. 3. Fluctuation of standard deviation of displacement.
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Fig. 4. Convergence of expectation of displacement.
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Fig. 5. Convergence of standard deviation of displacement.

with a slow convergence rate. The rate of convergence of the standard deviation is seen to be slower than
expectation value. This is partly due to the fact that the standard deviation results only from deviatoric
component of the sample whereas the expectation consists of mean value and deviatoric components
(Shinozuka and Yamazaki, 1988). However the rate of convergence of response may differ from sample to
sample.

The expectation and standard deviation of displacement obtained from direct simulation and Neumann
expansion are compared with perturbation results for varying c.o.v. as input parameter as shown in Figs. 6
and 7. The comparison shows that for small range of c.0.v. third order Neumann expansion is sufficient for
convergence of expectation as well as standard deviation of displacement. But for convergence of standard

2.8E-2 - —@— Neumann Expansion (3 terms)
-~ - Direct Simulation

Expectation of displacement (mm)

2.0E-2 | | |

0.05 0.10 0.15 0.20 0.25
Coefficient of Variation

Fig. 6. Comparison of expectation of displacement.
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Fig. 7. Comparison of standard deviation of displacement.

deviation at higher c.o.v., higher order Neumann expansion is required. It is also noted that the first order
perturbation result is close to that of the first order Neumann expansion. This implies that the accuracy of
the perturbation method is comparable to the Neumann expansion simulation method of the same order.
Thus first order perturbation method is effective if the c.0.v. of input random parameter is small. Incor-
poration of even the second order term in perturbation complicates the computation procedure to such an
extent that the computation time becomes prohibitively high and even more than the direct simulation
(Vanmarcke et al., 1986; Shinozuka and Yamazaki, 1988). Normalized computation time is compared in
Fig. 8. For a particular c.o.v., computation time increases with the increase in the order of Neumann
Expansion. After five terms, this method takes more CPU time than the direct simulation and is found to be
ineffective in terms of computation time. However, time saving depends on the order of expansion, numbers

1.50
| —@— Neumann Expansion (3 terms)
1254 % Direct Simulation
© 14 N First order Perturbation
£ 1.00— !
= i
®
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Fig. 8. Comparison of normalized CPU time.
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of degrees of freedom in the system, variability of the input and required degrees of accuracy. It has been
observed, if the order of Neumann expansion is fixed and not too large, the method will be much more
advantageous in terms of CPU time, as the number of degrees of freedom increases.
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